Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
PLoS One ; 19(5): e0299257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696394

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a common and severe complication in patients treated at an Intensive Care Unit (ICU). The pathogenesis of AKI has been reported to involve hypoperfusion, diminished oxygenation, systemic inflammation, and damage by increased intracellular iron concentration. Hepcidin, a regulator of iron metabolism, has been shown to be associated with sepsis and septic shock, conditions that can result in AKI. Heparin binding protein (HBP) has been reported to be associated with sepsis and AKI. The aim of the present study was to compare serum hepcidin and heparin binding protein (HBP) levels in relation to AKI in patients admitted to the ICU. METHODS: One hundred and forty patients with community acquired illness admitted to the ICU within 24 hours after first arrival to the hospital were included in the study. Eighty five of these patients were diagnosed with sepsis and 55 with other severe non-septic conditions. Logistic and linear regression models were created to evaluate possible correlations between circulating hepcidin and heparin-binding protein (HBP), stage 2-3 AKI, peak serum creatinine levels, and the need for renal replacement therapy (RRT). RESULTS: During the 7-day study period, 52% of the 85 sepsis and 33% of the 55 non-sepsis patients had been diagnosed with AKI stage 2-3 already at inclusion. The need for RRT was 20% and 15%, respectively, in the groups. Hepcidin levels at admission were significantly higher in the sepsis group compared to the non-sepsis group but these levels did not significantly correlate to the development of stage 2-3 AKI in the sepsis group (p = 0.189) nor in the non-sepsis group (p = 0.910). No significant correlation between hepcidin and peak creatinine levels, nor with the need for RRT was observed. Stage 2-3 AKI correlated, as expected, significantly with HBP levels at admission in both groups (Odds Ratio 1.008 (CI 1.003-1.014, p = 0.005), the need for RRT, as well as with peak creatinine in septic patients. CONCLUSION: Initial serum hepcidin, and HBP levels in patients admitted to the ICU are biomarkers for septic shock but in contrast to HBP, hepcidin does not portend progression of disease into AKI or a later need for RRT. Since hepcidin is a key regulator of iron metabolism our present data do not support a decisive role of initial iron levels in the progression of septic shock into AKI.


Asunto(s)
Lesión Renal Aguda , Péptidos Catiónicos Antimicrobianos , Proteínas Sanguíneas , Hepcidinas , Choque Séptico , Humanos , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Hepcidinas/sangre , Masculino , Femenino , Choque Séptico/sangre , Choque Séptico/complicaciones , Anciano , Persona de Mediana Edad , Proteínas Sanguíneas/metabolismo , Proteínas Portadoras/sangre , Infecciones Comunitarias Adquiridas/complicaciones , Infecciones Comunitarias Adquiridas/sangre , Biomarcadores/sangre , Unidades de Cuidados Intensivos , Creatinina/sangre , Anciano de 80 o más Años
2.
Nat Commun ; 15(1): 1150, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326335

RESUMEN

Extracellular vesicles (EVs) play a crucial role in intercellular communication by transferring bioactive molecules from donor to recipient cells. As a result, EV fusion leads to the modulation of cellular functions and has an impact on both physiological and pathological processes in the recipient cell. This study explores the impact of EV fusion on cellular responses to inflammatory signaling. Our findings reveal that fusion renders non-responsive cells susceptible to inflammatory signaling, as evidenced by increased NF-κB activation and the release of inflammatory mediators. Syntaxin-binding protein 1 is essential for the merge and activation of intracellular signaling. Subsequent analysis show that EVs transfer their functionally active receptors to target cells, making them prone to an otherwise unresponsive state. EVs in complex with their agonist, require no further stimulation of the target cells to trigger mobilization of NF-κB. While receptor antagonists were unable to inhibit NF-κB activation, blocking of the fusion between EVs and their target cells with heparin mitigated inflammation in mice challenged with EVs.


Asunto(s)
Vesículas Extracelulares , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Vesículas Extracelulares/metabolismo , Transporte Biológico , Transducción de Señal , Inflamación/patología
3.
Crit Care ; 27(1): 374, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773186

RESUMEN

BACKGROUND AND AIMS: The triggering factors of sepsis-induced myocardial dysfunction (SIMD) are poorly understood and are not addressed by current treatments. S100A8/A9 is a pro-inflammatory alarmin abundantly secreted by activated neutrophils during infection and inflammation. We investigated the efficacy of S100A8/A9 blockade as a potential new treatment in SIMD. METHODS: The relationship between plasma S100A8/A9 and cardiac dysfunction was assessed in a cohort of 62 patients with severe sepsis admitted to the intensive care unit of Linköping University Hospital, Sweden. We used S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 and S100A9-/- mice for therapeutic and mechanistic studies on endotoxemia-induced cardiac dysfunction in mice. RESULTS: In sepsis patients, elevated plasma S100A8/A9 was associated with left-ventricular (LV) systolic dysfunction and increased SOFA score. In wild-type mice, 5 mg/kg of bacterial lipopolysaccharide (LPS) induced rapid plasma S100A8/A9 increase and acute LV dysfunction. Two ABR-238901 doses (30 mg/kg) administered intraperitoneally with a 6 h interval, starting directly after LPS or at a later time-point when LV dysfunction is fully established, efficiently prevented and reversed the phenotype, respectively. In contrast, dexamethasone did not improve cardiac function compared to PBS-treated endotoxemic controls. S100A8/A9 inhibition potently reduced systemic levels of inflammatory mediators, prevented upregulation of inflammatory genes and restored mitochondrial function in the myocardium. The S100A9-/- mice were protected against LPS-induced LV dysfunction to an extent comparable with pharmacologic S100A8/A9 blockade. The ABR-238901 treatment did not induce an additional improvement of LV function in the S100A9-/- mice, confirming target specificity. CONCLUSION: Elevated S100A8/A9 is associated with the development of LV dysfunction in severe sepsis patients and in a mouse model of endotoxemia. Pharmacological blockade of S100A8/A9 with ABR-238901 has potent anti-inflammatory effects, mitigates myocardial dysfunction and might represent a novel therapeutic strategy for patients with severe sepsis.


Asunto(s)
Endotoxemia , Cardiopatías , Disfunción Ventricular Izquierda , Humanos , Ratones , Animales , Endotoxemia/complicaciones , Endotoxemia/tratamiento farmacológico , Lipopolisacáridos , Calgranulina A/fisiología , Calgranulina B/genética , Miocardio , Inflamación/tratamiento farmacológico
4.
Front Immunol ; 14: 1310271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283341

RESUMEN

Objective: The purpose of this study was to identify a panel of biomarkers for distinguishing early stage sepsis patients from non-infected trauma patients. Background: Accurate differentiation between trauma-induced sterile inflammation and real infective sepsis poses a complex life-threatening medical challenge because of their common symptoms albeit diverging clinical implications, namely different therapies. The timely and accurate identification of sepsis in trauma patients is therefore vital to ensure prompt and tailored medical interventions (provision of adequate antimicrobial agents and if possible eradication of infective foci) that can ultimately lead to improved therapeutic management and patient outcome. The adequate withholding of antimicrobials in trauma patients without sepsis is also important in aspects of both patient and environmental perspective. Methods: In this proof-of-concept study, we employed advanced technologies, including Matrix-Assisted Laser Desorption/Ionization (MALDI) and multiplex antibody arrays (MAA) to identify a panel of biomarkers distinguishing actual sepsis from trauma-induced sterile inflammation. Results: By comparing patient groups (controls, infected and non-infected trauma and septic shock patients under mechanical ventilation) at different time points, we uncovered distinct protein patterns associated with early trauma-induced sterile inflammation on the one hand and sepsis on the other hand. SYT13 and IL1F10 emerged as potential early sepsis biomarkers, while reduced levels of A2M were indicative of both trauma-induced inflammation and sepsis conditions. Additionally, higher levels of TREM1 were associated at a later stage in trauma patients. Furthermore, enrichment analyses revealed differences in the inflammatory response between trauma-induced inflammation and sepsis, with proteins related to complement and coagulation cascades being elevated whereas proteins relevant to focal adhesion were diminished in sepsis. Conclusions: Our findings, therefore, suggest that a combination of biomarkers is needed for the development of novel diagnostic approaches deciphering trauma-induced sterile inflammation from actual infective sepsis.


Asunto(s)
Antiinfecciosos , Enfermedades Transmisibles , Sepsis , Choque Séptico , Humanos , Sepsis/complicaciones , Sepsis/diagnóstico , Choque Séptico/complicaciones , Enfermedades Transmisibles/complicaciones , Biomarcadores , Inflamación , Sinaptotagminas
5.
Sci Rep ; 12(1): 14857, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050405

RESUMEN

Initial differential diagnosis and prognosis for patients admitted to intensive care with suspected sepsis remain arduous. Hepcidin has emerged as a potential biomarker for sepsis. Here we report data on the relevance of levels of hepcidin versus other biomarkers as a diagnostic and prognostic tool for sepsis. 164 adult patients admitted to the intensive care unit (ICU) within 24 h upon arrival to the hospital were included. Blood samples collected daily for seven consecutive days and hepcidin levels, heparin binding protein (HBP) levels and standard biomarkers were determined. Blood cultures were initiated at inclusion. Clinical scores were evaluated daily and mortality after 28- and 180-days was recorded. One hundred of the patients were found to fulfil the criteria for sepsis whereas 64 did not. Hepcidin levels at admission were significantly higher in the septic than in the non-septic patients. In septic patients hepcidin levels declined significantly already at 24 h followed by a steady decline. A significant negative correlation was observed between hepcidin levels and SAPS 3 in patients with sepsis. Hepcidin levels at inclusion were significantly higher among septic patients that survived 180-days and predicted mortality. Our data show that hepcidin levels are indicative of sepsis in patients admitted to the ICU and has a prognostic value for mortality.


Asunto(s)
Hepcidinas , Sepsis , Adulto , Biomarcadores , Cuidados Críticos , Enfermedad Crítica , Hepcidinas/química , Hepcidinas/metabolismo , Humanos , Unidades de Cuidados Intensivos , Pronóstico , Sepsis/diagnóstico , Sepsis/metabolismo , Choque Séptico/diagnóstico , Choque Séptico/metabolismo
6.
J Innate Immun ; 13(6): 321-322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34724673
7.
Front Cell Infect Microbiol ; 11: 752280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504810

RESUMEN

[This corrects the article DOI: 10.3389/fcimb.2021.633394.].

8.
J Innate Immun ; 13(5): 257-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34469890
9.
BMC Gastroenterol ; 21(1): 337, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454419

RESUMEN

BACKGROUND: Most patients with acute pancreatitis (AP) experience mild, self-limiting disease with little or no need for hospital care. However, 20-25% of patients develop a more severe and potentially life-threatening condition with progressive systemic inflammatory response syndrome (SIRS) and multiorgan failure, resulting in high morbidity and mortality rates. Predicting disease severity at an early stage is important, as immediate supportive care has been demonstrated to reduce the incidence of SIRS and organ failure, improving patient outcome. Several studies have demonstrated elevated levels of heparin-binding protein (HBP) in patients with sepsis and septic shock, and HBP is believed to play a part in endothelial dysfunction leading to vascular leakage. As HBP levels increase prior to other known biomarkers, HBP has emerged as a promising early predictor of severe sepsis with organ dysfunction. METHODS: Patients admitted to Skåne University Hospital in Malmö between 2010 and 2013 fulfilling the criteria for AP were identified in the emergency department and prospectively enrolled in this study. The primary outcome was measured levels of HBP upon hospital admission in patients with confirmed AP. Correlations among HBP concentrations, disease severity and fluid balance were considered secondary endpoints. The correlation between HBP levels and fluid balance were analysed using Pearson correlation, and the ability of HBP to predict moderately severe/severe AP was assessed using a receiver operating characteristic (ROC) curve. RESULTS: The overall median HBP level in this study was 529 (307-898) ng/ml. There were no significant group differences in HBP levels based on AP severity. Fluid balance differed significantly between patients with mild versus moderately severe and severe pancreatitis, but we found no correlation between HBP concentration and fluid balance. CONCLUSIONS: HBP levels are dramatically increased in patients with AP, and these levels far exceed those previously reported in other conditions. In this study, we did not observe any significant correlation between HBP levels and disease severity or the need for intravenous fluid. Additional studies on HBP are needed to further explore the role of HBP in the pathogenesis of AP and its possible clinical implications.


Asunto(s)
Pancreatitis , Enfermedad Aguda , Péptidos Catiónicos Antimicrobianos , Proteínas Sanguíneas , Proteínas Portadoras , Humanos
10.
Front Cell Infect Microbiol ; 11: 633394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094995

RESUMEN

Early recognition and elimination of invading pathogens by the innate immune system, is one of the most efficient host defense mechanisms preventing the induction of systemic complications from infection. To this end the host can mobilize endogenous antimicrobials capable of killing the intruder by perforating the microbial cell wall. Here, we show that Streptococcus pyogenes can shield its outer surface with a layer of plasma proteins. This mechanism protects the bacteria from an otherwise lytic attack by LL-37 and extracellular histones, allowing the bacteria to adjust their gene regulation to an otherwise hostile environment.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Proteínas Sanguíneas , Histonas , Humanos , Inmunidad Innata
11.
J Innate Immun ; 13(4): 195-196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34107491
15.
J Innate Immun ; 12(6): 435-436, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33152742
16.
J Innate Immun ; 12(6): 448-460, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32950976

RESUMEN

Septic shock, a serious consequence of disseminated infection that has a high mortality, is due to a dysregulated, severe immune response triggered by the infection. Acute phase reactants play key roles in sepsis, for example, hepcidin regulating iron metabolism. Reticulocyte haemoglobin (Ret-He) depends on available iron in blood, indirectly regulated by hepcidin. This study aimed at exploring rapid changes in hepcidin and Ret-He in patients with septic shock receiving adequate antibiotic treatment. Fifteen patients, included within an hour of admission to the intensive care unit, were evaluated by microbiological tests and cultures, Sequential Organ Failure Assessment score, and plasma levels of hepcidin, Ret-He, heparin-binding protein (HBP), leucocytes, C-reactive protein, procalcitonin (PCT), and lactate. Samples were taken every morning for 7 consecutive days. Maximal levels of hepcidin (median 61 nmol/L; reference 1-12 nmol/L) were seen at the time of inclusion, then declining steadily similar to PCT and lactate levels. Ret-He values decreased transiently in response to increased hepcidin, normalization occurred at 96 h upon decrease of hepcidin levels. Maximal levels of HBP were noted 24 h after inclusion. In conclusion, hepcidin promptly declined within the first 24 h in patients with septic shock receiving adequate antibiotic treatment in contrast to Ret-He and HBP.


Asunto(s)
Hemoglobinas/metabolismo , Hepcidinas/sangre , Reticulocitos/metabolismo , Choque Séptico/metabolismo , Adolescente , Adulto , Anciano , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/metabolismo , Biomarcadores , Proteínas Sanguíneas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Choque Séptico/tratamiento farmacológico , Adulto Joven
18.
Crit Rev Microbiol ; 46(2): 121-135, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32141788

RESUMEN

Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.


Asunto(s)
Hemostasis , Leptospira/fisiología , Leptospirosis/sangre , Animales , Fibrinólisis , Interacciones Huésped-Patógeno , Humanos , Leptospira/genética , Leptospirosis/microbiología
19.
20.
J Innate Immun ; 12(4): 277-290, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31563899

RESUMEN

Cold atmospheric plasma (CAP) has been demonstrated to be a successful antiseptic for chronic and infected wounds. Although experimental work has focused on elucidation of the curative power of CAP for wound healing, the molecular mechanisms behind this ability are less understood. To date, the direct effect of CAP on the activity of microbial virulence factors has not been investigated. In the present study, we therefore examined whether CAP can modulate the detrimental activity of M1 protein, one of the most studied Streptococcus pyogenes virulence determinant. Our results show that CAP abolishes the ability of M1 protein to trigger inflammatory host responses. Subsequent mass spectrometric analysis revealed that this effect was caused by oxidation of Met81 and Trp128 located at the sub-N-terminal region of M1 protein provoking a conformational change. Notably, our results also show that CAP has an insignificant effect on the host immune system, supporting the benefits of using CAP to combat infections. Considering the growing number of antibiotic-resistant bacteria, novel antimicrobial therapeutic approaches are urgently needed that do not bear the risk of inducing additional resistance. Our study therefore may open new research avenues for the development of novel approaches for the treatment of skin and wound infections caused by S. pyogenes.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Gases em Plasma/química , Streptococcus pyogenes , Factores de Virulencia/inmunología , Línea Celular Transformada , Humanos , Oxidación-Reducción , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...